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A B S T R A C T   

Plug-in hybrid electric vehicles (PHEVs) with battery packs tailored to the driving use case can help to reduce the 
environmental footprint of the transportation sector. Compared to common high-voltage systems, PHEVs based 
on a low-voltage level show a higher fuel consumption, but in return benefit from lower component costs and 
allow the utilization of cheaper high-energy cells. In this paper, the battery size of a 48 V PHEV concept is 
optimized to minimize the operational costs while taking battery degradation into account and ensure a lifetime- 
robust system layout. To investigate the applicability of high-energy batteries, 31 automotive-grade cells were 
investigated experimentally in a calendar and cycle aging study. The results show that calendar aging has a 
significant contribution of 17.5 % to the overall capacity loss and should be considered during the battery design 
process. The cycle degradation model is integrated in a Dynamic Programming simulation environment with 
various real-driving speed and slope profiles, which are extracted from a measured year-round driving profile. 
The simulation results show, that considering the degradation in the energy management strategy reduces the 
capacity loss but results in higher operational costs throughout the vehicle lifetime. The extension of a mild 
hybrid vehicle to a PHEV can reduce the operational costs by 18.5 %. If the vehicle is not charged, the costs 
increase by 6 % highlighting the need for frequent charging of PHEVs.   

1. Introduction 

In recent years, vehicles are electrified to reduce fossil fuel con
sumption by increasing the share of electric energy. Hybrid electric 
vehicles (HEVs) gain electric energy by brake energy recuperation or 
load shifting of the internal combustion engine [1]. Plug-in hybrid 
electric vehicles (PHEVs) have an additional charge plug to use electrical 
grid energy and increase the electric driving share further [2]. While 
larger battery pack capacities provide the opportunity to reduce the fuel 
consumption, the higher component prices increase the total costs over 
the vehicle lifetime. Optimal sizing of battery systems for PHEVs is 
therefore still an existing challenge [3–5], especially due to the coupling 
with the battery aging behavior and energy management system (EMS) 
[6]. 

While HEVs can be operated on a 48 V system voltage level, PHEVs 
are commonly operated with high-voltage components in the range of 
400 V. However, 48 V systems with electric peak powers of up to 30 kW 

allow the coverage of many driving operations, especially in the lower 
vehicle segments [7,8]. Measured results of a 48 V PHEV demonstrator 
vehicle show that this power requirement is sufficient for urban driving 
situations while CO2 emissions can be reduced significantly due to the 
higher electric driving share [9]. Similarly, the life-cycle CO2 reduction 
is significantly larger compared to HEVs without a charging opportunity 
and is close to the possible savings of a high-voltage PHEV [10]. Because 
low-voltage powertrain components are less expensive and do not 
require additional safety measures for maintenance, 48 V PHEVs can be 
a cost-efficient alternative compared to high-voltage PHEVs. 

Lithium-ion batteries are typically used to store electrical energy and 
enable larger shares of electric driving in PHEVs. In 48 V PHEV appli
cations, additional cost savings can be achieved with the utilization of 
high-energy battery cells. Due to the lower power requirements, the 
power-to-energy ratio of 48 V PHEVs is close to typical battery electric 
vehicles (BEVs) applications. The lower price per kWh and production 
scaling effects of widely used high-energy cells results in lower cell 
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prices compared to cells for high-voltage PHEV applications [11,12], 
which need to be adjusted for higher power requirements. 

Defining the optimal battery size in PHEVs is a major research topic 
as the battery accounts for a large share of the overall powertrain costs. 
The drivetrain components of a parallel PHEV are optimized in [13] 
with regard to the lowest costs in a convex optimization framework. The 
authors in [14] investigate the influence of different driving profiles on 
the cost-optimal battery capacity and demonstrate that the yearly 
mileage strongly affects the optimization results. 

The problem of component dimensioning is often accompanied by 
the associated optimization of the EMS. Since two energy sources are 
available in PHEVs, numerous strategies have been developed to find the 
optimal power share [15]. Next to lowering the fuel consumption or 
component costs, the optimization target can also include battery 
degradation. Conequently, studies deal with the design of aging-aware 
EMSs that include both domains to analyze the trade-off between the 
two conflicting targets [16,17]. 

The strategies can generally be divided into rule-based and 
optimization-based EMSs [18]. Rule-based strategies are easy to 
implement online and do not require a priori information of the drive 
cycle. The integration of battery degradation with varying thresholds 
[19] or a fuzzy logic controller [20,21] demonstrates that rule-based 
strategies can improve the optimization target. However, rule-based 
EMSs usually lack optimality and the rules, which are usually not 
transferable to other powertrain systems, need to be calibrated. 

Optimization-based EMSs aim to find the optimal control set of a 
certain cost function und are commonly divided into offline and online 
strategies. If the drive cycle information is available a priori, the global- 
optimal solution can be found. Therefore, offline strategies are typically 
used to generate benchmark results or to improve other online strategies 
based on the global-optimal findings. The additional integration of 
battery degradation has been widely studied in Dynamic Programming 
(DP) [22,23] and Pontryagin’s minimum principle (PMP) [24,25] al
gorithms. Online EMSs transfer the global-optimization problem into an 
instantaneous problem and can be implemented online due to their real- 
time capability. Improvements of the aging-aware objective functions 
are shown for the Equivalent Consumption Minimization Strategy 
(ECMS) [26], Model Predictive Control (MPC) [27,28]. The result of a 
real-time optimization-based EMS is only suboptimal as the equivalent 
factor needs to be calibrated for the ECMS and the MPC requires an 
uncertain drive cycle prediction on a certain time horizon. 

The battery aging models used for powertrain simulations can be 
divided into electrochemical and semi-empirical models. Electro
chemical models try to accurately describe the chemical processes inside 
the battery cell. Typically the growth of the solid electrolyte interface 
(SEI) on the anode surface is calculated, as it is considered the main 
aging mechanism for usual operation conditions [29]. The capacity loss 
can be precisely calculated, however electrochemical models are used in 
few powertrain studies [30] due to long calculation times and intensive 
model parametrizations. Semi-empirical models are based on simplified 
formulas that describe the battery degradation as a function of aging- 
relevant parameters, which are fitted through aging experiments [31]. 
These models are used in many sizing and EMSs studies because of their 
simplicity and low calculation time. The models of a commercial LFP cell 
[32,33] are frequently used in powertrain studies. Nevertheless, the 
comparison of the aging behavior between studies is often difficult as the 
experimental procedure is not standardized, the dependency on various 
aging mechanisms of other cell types is typically unequal and the 
application type of the cell is different or not specified [34]. 

To reduce the production costs and strengthen the availability of 
electric mobility in lower vehicle segments, further research in the field 
of low-voltage PHEVs is necessary. Only a few studies have investigated 
this concept and to the best of our knowledge, a battery aging-aware 
sizing study does not exist. Even though battery aging has been inte
grated into many high-voltage PHEV powertrain studies, the calendar 
aging influence is mostly neglected. Furthermore, the presented cycle 

aging models show differences compared to recent battery aging studies, 
because a strong dependency on the time spent in charge sustaining 
mode, which is especially important in PHEV applications, is observed 
[35]. The widely used degradation models do not consider this effect 
and are based on commercial high-power cells, contrary to the re
quirements of 48 V PHEV applications. 

To address the mentioned research gaps, this study discusses the 
battery aging in low-voltage PHEV applications and the derivation of the 
cost-optimal battery size. The main contributions are as follows: First, 
experimental results of a conducted aging study of a current automotive 
high-energy battery cell are presented and compared to a derived semi- 
empirical aging model. The separation into a cycle and calendar aging 
model allows to investigate the importance of calendar aging and vali
date if it can be neglected. Second, the aging model is implemented into 
a sizing framework using DP to derive a system layout that meets the 
lifetime requirements, which has not been reported in literature for 48 V 
PHEVs. Lifetime influencing factors are discussed with various real- 
driving cycles to ensure a functional system for different customer 
profiles. Additionally, this contribution sheds light on the trade-off be
tween the battery aging and fuel consumption and elaborates if addi
tional cost savings are possible with an aging-aware EMS. Finally, the 
cost-optimal battery size is derived with a large database of year- 
round cycles to ensure a realistic behavior under real-driving condi
tions and compared to the CO2-optimal results. 

The paper is organized as follows: Section 2 presents the powertrain 
simulation model and assumptions. The results of the aging study are 
shown in Section 3. The sizing framework is explained in Section 4. The 
resulting simulation results are shown and discussed in Section 5. 
Finally, Section 6 summarizes the findings of this study and open 
research questions are presented. 

2. Vehicle model 

2.1. Powertrain description 

The investigated system in this study is a parallel hybrid, where the 
electric machine (EM) is located between the transmission and the in
ternal combustion engine (ICE), also called P2 configuration. Table 1 
summarizes the main vehicle parameters. 

The ICE can be decoupled, which allows pure electric propulsion of 
the vehicle. If the required power exceeds the limits of the electric 
powertrain system or the State of Charge (SoC) is at a lower limit, the 
ICE is turned on and propels the vehicle in combination with the EM. 
Electric energy can be gained during recuperation braking conditions 
and by load shifting of the ICE. The battery is assumed to be fully 
charged for each driving day. 

2.2. Longitudinal dynamics 

The required wheel power PWhl, which needs to be satisfied in the 
utilized backward simulation, is calculated as follows: 

Table 1 
Main vehicle parameters [10].  

Property Symbol Value 

Vehicle base weight (kg) m0 1565 
Electric powertrain weight (kg) m0, Edr 50 
Battery energy density (Wh/kg) ρBat 130 
Frontal area (m2) A 2.13 
Air resistance coefficient cw 0.250 
Rolling resistance coefficient fR 0.008 
Equivalent rotational inertia (kgm2) Θ 1.1 
Gearbox mechanical efficiency ηTra 0.9 
12 V electrical system load (W) PPnt 800 
Fuel lower heating value (MJ/kg) Qlhv 42.9  
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PWhl =

(

mveh
dv
dt

Θ+mvehgfRcos(α)+mvehgsin(α)+ 0.5cwAρAirv
2
)

v (1)  

where mveh is the vehicle weight, v is the vehicle speed, Θ is the equiv
alent rotational inertia at wheel level, g is the gravitational acceleration, 
fR is the tire-rolling resistance coefficient, α the climbing angle, cw the air 
resistance coefficient, A the frontal area, and ρAir the air density. To 
consider the influence of the increasing battery weight with higher 
battery capacities, the total weight of the vehicle is defined as 

mveh = m0 +m0,Edr +
EBat

ρBat
(2)  

where m0 is the vehicle base weight, m0, Edr is the electric powertrain 
weight without the battery, EBat is the battery capacity, and ρBat is the 
battery gravimetric energy density. The battery power is then calculated 
as 

PBat =
PWhl

ηEdrηTra
ψsplit +

PPnt

ηDC/DC
(3)  

where ηEdr is the combined EM/Inverter efficiency, ηTra is the trans
mission efficiency, ψ split is the power split between the EM and ICE, PPnt 
is the 12 V electrical system load, and ηDC/DC is the converter efficiency 
between 12 V and 48 V. A charging efficiency of 85 % is considered to 
obtain the energy from the grid. For power splits ψ split < 1 the ICE is 
turned on and the fuel consumption is calculated as 

ṁf =
PWhl

ηICEηTraQlhv

(
1 − ψsplit

)
(4)  

where ηICE is the ICE efficiency and Qlhv is the lower heating value of the 
fuel. The utilized efficiency maps of the ICE ηICE and EM ηEdr are shown 
in Fig. 1. 

2.3. Drive cycle generation 

PHEVs can drive in charge depleting and charge sustaining mode 
which influences the energy efficiency and battery aging behavior. 
Therefore, different driving cycles lead to significantly different opti
mizations results. Various real-driving trips are simulated in this study to 
investigate the effects of different driving cycles on the simulation re
sults. The vehicle speed and slope profiles, which are gained by a Global 
Position System (GPS) map-matching, are recorded during on-the-road 
measurements to ensure realistic operation conditions. The cycles 

cover a broad range of distances up to 680 km and include city and 
highway driving shares. Further insights in the driving dynamics are 
provided in [10] for the average driver use-case. 

2.4. Battery circuit model 

The electrical behavior of the battery is modeled with an equivalent 
circuit model, which considers the open-circuit voltage and internal 
resistance values of the cell, as follows, 

IBat =
UOCV −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

U2
OCV − 4PBatRDC,5s

√

2RDC,5s
(5)  

˙SOC = −
IBat

CBat
(6)  

where IBat is the battery pack current, UOCV is the open-circuit voltage, 
PBat is the battery pack power, RDC, 5s is the internal resistance measured 
after a 5 s pulse, SOC is the state-of-charge, and CBat is the battery pack 
capacity. The open-circuit voltage and internal resistance are adapted 
from [10]. 

3. Battery aging model 

The battery aging model in this study is based on our own experi
mental results. Widely used aging models neglect the influence of the 
Depth of Discharge (DoD) on the degradation [32,33], which is specif
ically important for PHEVs in charge sustaining mode, where the battery 
is cycled in a narrow range. Recent aging studies show that the DoD has 
a major influence on the aging performance [35,36]. Furthermore, our 
results are based on a large-format 108 Ah battery cell with 
LiNi0,5Mn0,3Co0,2O2 (NMC532) on the cathode and graphite on the 
anode, which is suitable for automotive 48 V PHEV applications. All 
experiments were conducted with Basytech HPS battery cell testers and 
stored in climate chambers. The battery cells of the cycle aging study are 
clamped by steel plates with springs which are tightened according to 
the datasheet requirements. The initial state of charge of all cells is 30 %. 

The check-up measurements are conducted at a temperature of 
25 ◦C. At each check-up the cells are charged up to 4.3 V with 0.5C and a 
constant-voltage phase of 0.05C. Afterwards a capacity measurement in 
discharge and charge direction is done, using a constant current of 0.5C 
followed by a constant-voltage phase until the current falls below 0.05C. 
Afterwards a quasi-OCV test with 0.1C is performed, along with severely 
pulse tests at 50 % SoC, which will not be discussed further in this study. 

Fig. 1. Efficiency maps for (a) ICE showing the maximum torque (black) and maximum power (blue) lines and (b) EM. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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At the end of the check-up another capacity measurement in charge and 
discharge direction with 0.5C is implemented. The presented capacity 
values are mean values of the initial and final 0.5C discharge capacity 
measurements to minimize the possible effects of the anode overhang 
during the check-up [36,37]. 

The calendar and cycle aging model are combined to calculate the 
overall capacity loss Qloss, tot as 

Qloss,tot = Qloss,cal +Qloss,cyc (7)  

where Qloss, cal is the capacity loss due to calendar aging and Qloss, cyc is 
the capacity loss induced by cyclization. A total capacity loss of 20 % is 
defined as the End of Life criterion in this study. 

3.1. Calendar aging 

To investigate the calendar aging, 9 cells were stored at three 
different temperatures and different SoCs. A checkup was conducted 
every 4 weeks to minimize the cyclization of the cell and still gain 
enough measurement points. The SoC is set by Ah-counting according to 
the measured capacity during the check-up and the voltage is kept 
constant afterwards. 

The remaining capacity Ccal after calendar aging over time is 
modeled as 

Ccal = 1 − Qloss,cal (8)  

Qloss,cal = kTemp,cal(T)⋅kSOC(SOC)⋅tzcal (9)  

where kTemp, cal, kSoC and zcal are calibrated coefficients to fit the mea
surement results with an adopted method of [38] and t is the storage 
time. The measured capacity and model predictions for selected test 
points are shown in Fig. 2. Higher SoCs lead to accelerated aging with a 
nonlinear trend, which is similar to published results in [39]. The tem
perature dependency for the capacity loss is modeled with an widely 
accepted Arrhenius relationship [40–42]. 

Applying the calendar aging model to the hourly temperature profile 
of Stuttgart in Germany, shown in Fig. 3, results in a capacity loss of 3.5 
% after 10 years. The required SoC profile is obtained from the year- 
round driving profiles while assuming that that the vehicle will get 
charged immediately after each driving mission. In terms of calendar 
aging this charging behavior leads to the most severe capacity loss as 
higher SoCs are harmful and consequently represents the worst case 
scenario. A total capacity loss of 20 % is defined as the End of Life cri
terion, so a loss of 16.5 % is the limit Ccyc, max for cycle aging, assuming 

that there is no amplification of calendar and cycle aging in the com
bined model. For this battery cell, the capacity loss due to calendar aging 
accounts for a significant share of 17.5 % and needs to be considered 
during the design process. 

3.2. Cycle aging 

22 cells were cycled with different combinations of DoD, Cdsg, 
meanSoC, and temperature T. Two subsequent constant charging steps of 
1C and 0.5C were chosen for all test points. Most of the test points cover 
different charge depleting operation scenarios, whereas one cell was 
cycled in charge sustaining mode with a small DoD of 5 % at 20 % 
meanSoC to investigate the effects of shallow cycling. The discharge 
rates Cdsg of 1C and 1.5C represent typical mean discharge scenarios for 
48 V PHEVs with small battery capacities, which lead to high currents 
and therefore represent a worst-case scenario in terms of aging. 

The relative discharge capacity over full equivalent cycles for 
selected test points is shown in Fig. 4. Higher discharge currents increase 
the battery degradation only slightly, whereas higher DoDs have a more 
significant impact. Additionally, the capacity for the cell cycled with a 
DoD of 90 % shows a strong non-linear capacity decrease after about 
1000 FECs. Similar curves were measured at other test points for cells 
cycled to an upper charging limit of 95 % SoC. The cells cycled with 
smaller DoDs also indicated slight nonlinear aging at the end of the 
measurement campaign. As temperatures of 14–18 ◦C were necessary to 
keep the cell housing temperature at a level of 25 ◦C, the shown behavior 
may be associated with the development of lithium plating. This aging 
mechanism is known to occur at low temperatures as well as high 
charging currents and has already been indicated by other studies with 

Fig. 2. Relative capacity for selected calendar aging test points. Scatter points 
indicate measurement values, solid lines the model predications. 

Fig. 3. Temperature profile of Stuttgart.  

Fig. 4. Relative capacity for selected cycle aging test points. Scatter points 
indicate measurement values, solid lines the model predications. 
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similar cycling conditions [35,43]. Furthermore, the comparably high 
upper charging limit of 4.3 V and charging current of 1C can favor 
various aging mechanisms like electrolyte decomposition or cathode 
material losses, leading to an accelerated capacity loss [44]. 

The solid lines show the remaining capacity Ccyc after cyclization, 
calculated by the aging model as a function of full equivalent cycles 
(FEC) 

Ccyc = 1 − Qloss,cyc  

Qloss,cyc = Qloss,linear +Qloss,nonlinear (10)  

Qloss,linear = kTemp,cyc(T)⋅kCrate(Crate)⋅kmeanSoC(meanSoC)⋅kDoD(DoD)⋅FECzcyc

(11)  

Qloss,nonlinear = knonlinear,1⋅exp
(
knonlinear,2(DoD,meanSoC)⋅FEC

)
(12)  

where kTemp, cyc, kCrate, kmeanSoC, kDoD, knonlinear, 1, knonlinear, 2 and zcyc are 
calibrated coefficients corresponding to the experimental parameter to 
fit the measurement results with a linear least square method. Even 
though the average discharge current of 1.5C is much higher compared 
to typical BEV applications, the results indicate that high-energy cells do 
not show severe capacity losses in these test points and are suitable for 
48 V PHEV applications. For the operation mode context, it can be 
concluded that lower DoDs are beneficial in terms of capacity loss. 
Therefore, cyclization in charge sustaining mode leads to a smaller 
degradation of the cell [35,45]. 

The concept of a severity factor map is used to transfer the cycle 
aging model into the energy management strategy [46]. The severity 
factor σ is defined as 

σ =
FECnom

(
Cdsg,nom,meanSoCnom,DoDnom

)

FECact
(
Cdsg,meanSoC,DoD

) (13) 

Where FECnom is the number of FEC until the End of Life is reached 
with nominal conditions meanSoCnom and DoDnom. In contrast FECact is 
the number of FEC until End of Life with the actual conditions. As the 
meanSoC and DoD are not known during the simulation, it is assumed 
that the battery will be fully discharged in the cycle. The exact capacity 
loss is calculated after the simulation is completed using a rainflow al
gorithm [47,48]. 

Fig. 5 shows the number of full equivalent cycles FECact until the 

capacity loss Ccyc, max is reached during cyclization of the cells. The 
nominal conditions are chosen as Cdsg, nom = 1 C, meanSoCnom = 0.5, 
DoDnom = 0.75 which leads to 2280 FEC. The steep decrease towards 
higher DoDs and meanSoCs reflects the previously discussed non-linear 
degradation effects towards high upper charging SoCs. The current de
pendency is modeled linearly, as only two different discharge rates are 
tested. For this study it is assumed that the battery temperature can be 
held constant at 25 ◦C by the cooling system. 

Two additional cells are cycled with a dynamic power profile to 
validate the generated lifetime model. The power profile is shown in 
Fig. 6 which is derived from two consecutive charge depleting WLTC 
cycle simulations. With this profile the battery is discharged with a DoD 
of 58 % at a meanSoC of 50 % at begin of life. The peak discharge power 
of 1000 W in the validation profile results in 24 kW for the battery pack 
if 12 cells are connected in series and two in parallel, which is a typical 
range for 48 V applications. This connection results in a battery pack 
capacity of 9.6 kWh for the investigated cell. As the capacities in PHEVs 
on the market are getting larger, the peak power on cell level decreases 
and this profile covers the most severe power conditions. 

Fig. 5. Full equivalent cycles until Ccyc, max is reached as a function of (a) meanSoC and DoD, (b) Cdsg-Rate and DoD.  

Fig. 6. Dynamic profile derived from WLTC simulation for aging 
model validation. 
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The battery degradation curves for the dynamic validation profiles 
are shown in Fig. 7. The spread of the capacity loss is so small that the 
error bars are smaller than the marker size. The resistance increase 
remained within 5 % in the measurements and is therefore neglected in 
this study. The aging model can predict the capacity loss with minor 
deviations throughout the measurement time until about 1300 full 
equivalent cycles, which is equivalent to 3550 WLTC cycles. Conse
quently, a capacity loss of 6.6 % would be measurable after 82.000 km if 
the battery is used in charge depleting mode only. The validation also 
highlights that small recuperation pulses during dynamic cycling do not 
increase the capacity loss. The degradation is mainly influenced by the 
CC charging phase and especially the DoD, which is also shown [49]. 
Consequently, a higher energy throughput does not inevitably result in a 
higher capacity loss for short recuperation phases [50]. 

4. Optimization problem formulation 

The main target of this paper is to find cost-optimal battery sizes for 
48 V PHEV applications that fulfill the lifetime requirements for various 
customers. The aging-aware optimization workflow is shown in Fig. 8. 
Discrete battery pack capacities between 5 and 30 kWh are simulated 
with year-round drive cycles. During the sizing optimization, the num
ber of cells connected in series is fixed to 12 to stay in a reasonable 
voltage range. A DP algorithm is used to find the global optimal solution 
for each cycle. The optimization function in this study is based on a 
minimization of the operational costs J as: 

J =

∫ tf

t0

(

cFuelṁf + cElecPBat +ωcBat
σ|IBat|

CBatFECnom

)

dt (14) 

Where cFuel is the fuel price, cElec is the electricity price, cBat is the 
battery price, and ω is the weight factor for battery aging. Table 2 lists 
the cost parameters used in this study. The fuel and electricity prices are 
mean values of the five countries with the largest PHEV fleet in Europe 
[52]. The battery pack price is adapted, considering the base case sce
nario for 2025 and converted to EUR using an exchange rate of 1.09 
USD/EUR. To ensure that the lifetime requirements can be met by 
different customers, the battery weight factor is increased until the cycle 
degradation is lower than Ccyc, max for the cycle that results in the highest 
capacity loss. With the defined weight factor, the distance-weighted 
year-round average costs are calculated to derive the cost-optimal bat
tery capacity. 

5. Simulation results and discussion 

5.1. Derivation of DoD 

In a first step, a suitable DoD is derived as no reference value exists in 
literature for this application. The capacity loss is examined for different 
battery capacities and DoDs in several driving cycles for this purpose. 
The DoD is chosen according to the most critical cycle in terms of aging 
to ensure that the proposed system is suitable for various types of 
customers. 

Fig. 9a illustrates the capacity loss for different driving cycles if the 
DoD is fixed to 70 %. The mean SoC is set to 50 % during the optimi
zation to have a buffer towards the upper and lower voltage limits if the 
battery is fully charged or discharged. The different colors represent the 
capacity loss for different battery capacities. It is assumed that one cycle 
will be repeated until the vehicle lifetime distance is reached. The aging 
weight factor ω is set to zero, to ensure that the lifetime requirements 
can be met even if the battery degradation is neglected in the operating 
strategy. 

The largest capacity loss can be observed for small battery capacities 
at medium-length cycles. The dynamic and speed characteristics of the 
drive cycles influence the capacity loss only slightly as the spread of the 
markers is comparably small. First, if the battery is dimensioned smaller, 
the energy throughput of the cells and therefore the number of full 

Fig. 7. Aging model validation for capacity loss and resistance increase with 
dynamic WLTC profile. Scatter points indicate measurement values, solid lines 
the model predications. 

Identify critical aging cycle

Dynamic programming

Driving cyclesBattery size

Calculate year-round average

Cost-optimal battery size

no

yes

Fig. 8. Aging-aware battery sizing workflow.  

Table 2 
Cost parameters.  

Property Symbol Value 

Gasoline price (EUR/L) [51] cFuel  1.93 
Electricity price (EUR/kWh) [51] cElec  0.25 
Battery pack price (EUR/kWh) [53] cBat  132  
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equivalent cycles (FECs) over lifetime increases. Therefore, a lower ca
pacity fade can be seen for larger capacities in all cycles. The second 
effect, the peak at medium-length cycles, is additionally influenced by 
the DoD. During short trips, the battery is not discharged completely, 
leading to a beneficial, smaller cyclization range. However, if a cycle is 
longer than the electric range of the vehicle, the battery is still only 
discharged once. Additional shallow cycles do not contribute to a ca
pacity loss significantly. As longer cycles need to be repeated less often 
until the vehicle lifetime is reached, the overall capacity loss is reduced. 
Consequently, the capacity loss is similar for all capacities in cycles 
longer than 200 km as the battery is fully discharged in all cases. In 
summary, the largest capacity fade can be observed for cycles that 
exactly discharge the battery which leads to a right-shift of the peak for 
larger capacities. 

In Fig. 9b, the influence of different DoDs for a battery capacity of 10 
kWh is shown. Again, a peak can be observed for cycles that discharge 
the battery completely. In this case, the peak shifts towards the right 
because the usable capacity increases with higher DoDs. According to 
the presented aging model, the capacity loss increases with a higher 
DoD. Especially the increase from 80 % to 90 % DoD leads to a signifi
cant battery degradation because the upper charging SoC is 95 % in this 
case. The higher nonlinear aging share consequently results in a large 
capacity loss. 

In realistic use-cases, commuters often travel similar distances which 
is specifically harmful if this distance matches the electric range of the 
battery. The worst case cycle is considered for the sizing optimization to 
ensure that the lifetime requirements for the proposed system can be 
fulfilled by all customers. The highest capacity losses are summarized in 
Table 3 where configurations, which exceed a capacity loss of Ccyc, max, 
are marked with parentheses. In these cases, the battery needs to be 
replaced before the vehicle reaches the EoL distance of 200.000 km. The 
lifetime requirements cannot be met for any of the investigated DoDs 
with a battery capacity of 5 kWh. For small battery sizes, the highest 
capacity losses occur during short cycles which need to be repeated 

more often, leading to a high number of FECs throughout the vehicle 
lifetime. With larger battery capacities the DoD can be increased so that 
a vehicle could be operated with a DoD of 90 % if the battery capacity 
exceeds 20 kWh. However, it must be noted that in this case the battery 
is operated close to the voltage limits of 36 V or 52 V. A DoD of 70 % is 
selected in the further optimization procedure as it is compatible with 
battery capacities of >10 kWh and allows for a buffer in the voltage 
limits. 

As the average battery capacities of PHEVs in the market show an 
increasing trend with higher electric ranges, most of the vehicles will 
utilize a battery with >10 kWh which is sufficient to meet lifetime re
quirements with the proposed DoD of 70 %. The most critical cycle, 
which leads to a cyclic capacity loss of 14.7 %, would require 2871 FECs 
throughout the vehicle lifetime. In contrast to many commercial cells, 
current NMC automotive battery cells are able to exceed these re
quirements with a DoD of 100 % [24,25]. 

5.2. Aging-aware energy management strategy 

In the next step, the cost reduction potential is studied if the battery 
degradation is considered in the energy management strategy. Fig. 10 
shows the effect of different weight factors ω on the battery power. 
Increasing the weight factor limits the peak power of the battery which 
in turn increases the required ICE power and fuel consumption. The 
capacity loss is reduced due to two effects. First, lower currents increase 
the battery life according to the aging model. Second, motoric operating 
points are limited stronger compared to recuperation occasions, sothe 
battery is discharged less which reduces the DoD and energy 
throughput. Consequently, the battery cells endure a lower number of 
FECs throughout their lifetime. 

The operating costs for different aging weights are shown in Fig. 11. 
Each capacity is simulated with the corresponding drive cycle that re
sults in the largest capacity loss to obtain the highest aging cost-saving 
potential. The aging costs refer to the combined cycle and calendar 
degradation and the battery pack price is due if the capacity loss reaches 
20 %. Similar to the findings of [54] an increasing weight factor leads to 
higher total operating costs as the fuel costs increase faster than the 
savings due to a lower capacity loss and electricity consumption in all 
simulated battery capacities. Nonetheless, a weight factor is necessary to 
fulfill the lifetime requirements for batteries smaller than 10 kWh as the 
combined capacity loss exceeds 20 % in red-shaded areas. 

Recent cost reductions for batteries and price increases for energy 
carriers in the transport sector minimize the aging cost share on the 
overall operating cost. This is further enhanced in the case of 48 V 

Fig. 9. Capacity loss due to cycling in different cycles with (a) a DoD of 70 % 
and (b) a capacity of 10 kWh. 

Table 3 
Maximum capacity loss due to cycling for different battery capacities and DoDs. 
Cases in parentheses indicate that the lifetime requirements cannot be met.   

Battery capacity 

DoD 5 kWh 10 kWh 15 kWh 20 kWh 25 kWh 30 kWh 

60 % (27.7 %) 10.5 % 6.9 % 5.6 % 4.7 % 4.2 % 
70 % (33.4 %) 14.7 % 7.3 % 5.6 % 4.7 % 4.2 % 
80 % (41.0 %) (19.4 %) 7.7 % 6.2 % 5.0 % 4.7 % 
90 % (57.4 %) (26.3 %) (16.9 %) 7.2 % 7.0 % 5.5 %  Fig. 10. Battery power limitation with increasing battery aging weight factor.  
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PHEVs as the battery price per kWh is lower for high-energy cells 
compared to conventional PHEV cells. Moreover, improvements in the 
automotive battery cell technology allow for a large energy throughput, 
reducing the need for a premature replacement in many applications. In 
summary, the aging weight factor should be set as low as possible to 
achieve the lowest operating cost, which also results in the most energy- 
efficient solution with the lowest fuel consumption. In the following 
sizing optimization, the aging weight factor ω is consequently set to the 
smallest value for each capacity which still results in a combined ca
pacity loss of <20 %. 

5.3. Operating cost minimization 

In the next step, the battery capacity is optimized to obtain the lowest 
operating costs. Fig. 12 shows the distance-weighted costs for the year- 
round driving cycles. The fuel and electricity costs account for a large 
part of the total costs, whereas the battery degradation cost result in a 
minor share. If only one specific driving cycle is considered, a minimum 
for the fuel costs arises when the electric range matches the drive cycle 
distance. The energy of larger battery capacities cannot be converted 
into mechanical energy and the increasing weight results in higher 
power demands. However, the fuel costs for the year-round cycles shrink 
over the complete investigated capacity range, with especially sharp 
decreases between 5 and 10 kWh. This highlights the need for year- 
round simulations in PHEV sizing studies because larger battery ca
pacities can still decrease the overall fuel consumption, even though the 
energy is only beneficial in a few longer driving cycles. The electricity 
costs show a reverse trend because larger trip shares are covered in 
electric mode with higher capacities. 

The aging costs show an increasing trend with a small plateau at 10 
kWh. The aging weight factor reduces the battery usage between 5 and 

10 kWh depicted by the lower aging and electricity costs. With higher 
capacities, the relative cycle degradation can be reduced. However, the 
absolute battery price increases. As shown in Fig. 9, the capacity loss can 
be reduced significantly up until 15 kWh and decreases only slightly 
with even larger capacities. Furthermore, the absolute calendar aging 
costs increase linearly because the capacity loss is not dependent on the 
battery size. The savings due to a lower cycling degradation are not 
sufficiently high to overcompensate for this effect. In conclusion, the 
combined battery aging costs show an almost linearly increasing trend. 

If the three cost contributions are combined to the shown total cost 
curve, larger cost savings can be achieved up to 10 kWh because of the 
larger electrically driven trip share. Between 10 and 20 kWh the fuel 
savings are mostly compensated by the higher electricity costs, leading 
to an almost steady total cost curve. With capacities above 20 kWh, the 
total costs increase because the additional battery capacity cannot be 
used in combination with higher power requirements and increasing 
battery aging costs. 

The optimal sizing results are compared to a 48 V HEV in Table 4. For 
this system, the battery cell was changed to a high power cell and the 
vehicle was operated in charge sustaining mode only resulting in no 
electricity costs. The aging calculation would require additional tests 
with high-power cells and is neglected. 48 V batteries in mild hybrid 
applications are designed for low costs with small capacities so the aging 
costs are expected to be low compared to the PHEV case. The total costs 
can be reduced by 18.5 % even for this conservative case by extending a 
mild hybrid to a PHEV which is charged daily. Operating the 48 V PHEV 
vehicle in charge sustaining mode results in a higher fuel consumption 
compared to the HEV case because of the larger vehicle weight. Even 
though the cycle aging is small due to the low DoD, the costs due to 
calendar aging increase the cost difference further, resulting in a total 
raise of 6 %. 

5.4. Comparison to CO2-optimal sizing 

In our previous study [10] we derived CO2-optimal capacities for 
different scenarios neglecting the battery degradation. The optimal ca
pacity for the average driver case and a compact class vehicle, which is 
also used in this study, results in an optimal battery capacity of 10.2 kWh 
in 2020 and 22 kWh in the 2030 scenario. In future years the emissions 
for electricity and battery production are expected the decrease, so a 
larger capacity is beneficial to increase the electric driving share. 

Even though the battery degradation was neglected previously, the 
derived capacities are above the critical limit of 10 kWh which does not 

Fig. 11. Operating costs with increasing aging weight factor for different bat
tery capacities. Each capacity is simulated with the driving cycle that results in 
the highest capacity loss. Red areas indicate that the lifetime requirements 
cannot be met. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 12. Average costs over lifetime for different capacities.  
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require the inclusion of a battery weight factor. The proposed system 
should therefore be expected to fulfill the lifetime requirements as well. 

The cost-optimal capacity proposed in this study is located exactly 
within this range. The total cost curve is found to be relatively flat, 
meaning that larger battery capacities, which are CO2-optimal in future 
years and drivers with a higher annual mileage, result in a minor cost 
increase. 

6. Summary and outlook 

This paper presents a cost-optimal battery sizing method for 48 V 
PHEVs which includes the degradation of the battery cells. As the 
parametrized battery cells of the widely used semi-empirical aging 
models found in literature do not fit to the requirements of 48 V PHEVs, 
the results of the conducted calendar and cycling aging experiments for 
an automotive high-energy cell are presented. The generated semi- 
empirical model is implemented into the DP optimization framework 
to define a system layout that fulfills the lifetime requirements. The key 
findings are:  

(1) With the assumed conditions, the capacity loss during calendar 
aging was found to be 3.5 % which results in a share of at least 
17.5 % if the total capacity loss of 20 % is reached. Therefore, it 
should be considered during the design process to meet the life
time requirements and find the cost-optimal result.  

(2) The cycle aging model revealed that smaller DoDs do not 
contribute to the overall capacity loss, so only the main discharge 
process is relevant. Furthermore, avoiding high charging SoCs is 
recommended due to the risk of accelerated, non-linear capacity 
loss.  

(3) The aging weight factor reduces the peak C-rates and energy 
throughput of the battery cells, which can increase the battery 
lifetime. However, the factor should be set as low as possible 
because the increasing fuel consumption leads to higher costs and 
CO2 emissions. The contribution of the battery aging costs is low 
compared to the fuel and electricity costs.  

(4) The simulation of year-round driving profiles showed that the 
lifetime costs are minimized at 16 kWh but are almost insensitive 
to the battery capacity above 10 kWh. The fuel consumption and 
electricity cost showed no peak, indicating that large battery 
capacities are beneficial even though the energy can be used in 
only a few longer drive cycles under the assumption of frequent 
charging. 

The implementation of the proposed system still needs to be inves
tigated and optimized in real-time applications with online EMSs. The 
publication of comprehensive battery aging experiments and subsequent 
derivation of semi-empirical aging models for current high-energy cells 
can improve the accuracy of the capacity loss predictions. Furthermore, 
the thermal effects and ambient conditions should be studied in detail, 
along with on-road vehicle verification tests. 
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[14] M. Redelbach, E.D. Özdemir, H.E. Friedrich, Optimizing battery sizes of plug-in 
hybrid and extended range electric vehicles for different user types, Energy Policy 
73 (2014) 158–168, https://doi.org/10.1016/j.enpol.2014.05.052. 

[15] D.-D. Tran, M. Vafaeipour, M. El Baghdadi, R. Barrero, J. van Mierlo, O. Hegazy, 
Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: 
topologies and integrated energy management strategies, Renew. Sust. Energ. Rev. 
119 (2020) 1–29, https://doi.org/10.1016/j.rser.2019.109596. 

[16] N. Sockeel, J. Shi, M. Shahverdi, M. Mazzola, Pareto front analysis of the objective 
function in model predictive control based power management system of a plug-in 
hybrid electric vehicle, in: 2018 IEEE Transportation Electrification Conference 
and Expo (ITEC), 2018, pp. 971–976, https://doi.org/10.1109/ 
ITEC.2018.8449957. 

[17] M. Mahmoodi-k, M. Montazeri-Gh, V. Madanipour, Simultaneous multi-objective 
optimization of a PHEV power management system and component sizing in real 
world traffic condition, Energy 223 (2021), https://doi.org/10.1016/j. 
energy.2021.121111. 

[18] Y. Huang, H. Wang, A. Khajepour, B. Li, J. Ji, K. Zhao, et al., A review of power 
management strategies and component sizing methods for hybrid vehicles, Renew. 
Sust. Energ. Rev. 96 (2018) 132–144, https://doi.org/10.1016/j.rser.2018.07.020. 

[19] Z. Chen, J. Lu, B. Liu, N. Zhou, S. Li, Optimal energy management of plug-in hybrid 
electric vehicles concerning the entire lifespan of lithium-ion batteries, Energies 13 
(10) (2020) 1–15, https://doi.org/10.3390/en13102543. 
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